1,2 dan 3
alternatives Vay Tiền Trả Góp Theo Tháng Chỉ Cần Cmnd. Pembiasan cahaya atau disebut juga difraksi adalah suatu peristiwa pembelokan arah rambat cahaya ketika melewati batas antara dua medium yang berbeda kerapatan optiknya. Pembiasan cahaya terjadi akibat kecepatan cahaya berbeda pada setiap medium. Kerapatan optik suatu medium dinyatakan sebagai indeks bias. Semakin besar indeks bias suatu medium, maka kerapatannya semakin besar pula. Oleh karena itu, jika seberkas cahaya melalui suatu medium yang indeks biasnya besar, maka akan semakin besar pula cahaya tersebut dibelokkan atau dibiaskan. Nah pada kesempatan kali ini, kita akan belajar mengenai contoh-contoh fenomena dalam kehidupan sehari-hari yang berhubungan dengan peristiwa pembiasan serta penjelasan secara fisika bagaimana proses terjadinya fenomena tersebut. Kita akan membicarakan empat fenomena fisika antara lain peristiwa terjadinya fatamorgana, pembentukan bayangan pada periskop, dasar kolam yang tampak lebih dangkal, dan posisi benda-benda langit yang tidak pada tempat sebenarnya. Berikut ini penjelasannya. 1. Peristiwa terjadinya fatamorgana Fatamorgana merupakan sebuah istilah kepada suatu hal yang bersifat khayal yang tidak mungkin dapat dapat dicapai. Karena memang peristiwa ini diambil dari gejala optik yang menyebabkan suatu permukaan yang sangat panas atau memiliki suhu panas, tampak berkilat seperti ketika melihat permukaan air. Fenomena fatamorgana biasanya terjadi di tanah atau bidang yang luas dan panjang seperti jalan aspal, padang pasir atau padang es. Sebagai contoh, pada waktu siang hari yang panas terik ketika kita sedang berada di pinggir jalan raya beraspal, kita memandang jauh ke jalan raya ternyata terlihat seperti ada air di atas aspal. Kemudian setelah kita dekati ternyata air tersebut tidak ada. Mengapa hal ini bisa terjadi? Bagaimana penjelasannya secara fisika? Simak penjelasan berikut. Pada siang hari yang panas, cahaya matahari mengenai aspal sehingga permukaan aspal menjadi sangat panas. Karena aspal menjadi panas, maka lapisan udara yang dekat dengan permukaan aspal menjadi panas juga sehingga kerapatan optiknya menjadi lebih kecil renggang, kita sebut saja lapisan udara dingin. Sementara itu, lapisan udara yang letaknya beberapa centimeter di atas lapisan udara panas tersebut memiliki kerapatan optik yang lebih besar rapat, kita sebut saja lapisan udara panas. Pada pembiasan cahaya, jika sinar datang dari medium lebih rapat menuju medium kurang rapat renggang maka cahaya akan dibiaskan menjauhi garis normal. Perhatikan gambar di atas, sinar 1 datang dari lapisan udara dingin menuju lapisan udara panas maka dibiaskan menjauhi garis normal. Hal ini karena kerapatan optik lapisan udara dingin lebih besar daripada lapisan udara panas. Kemudian sinar 2 datang dengan sudut datang lebih besar lagi sehingga sinar dibiaskan sejajar dengan bidang batas antara lapisan udara dingin dan udara panas. Sudut datang sinar 2 ini merupakan sudut kritis, yaitu sudut datang yang menghasilkan sudut bias sebesar 90°. Kemudian sinar 3 datang dengan sudut yang datang yang lebih besar lagi dari sudut kritis sinar 2, sehingga sinar tidak lagi dibiaskan melainkan dipantulkan. Peristiwa ini dinamakan pemantulan sempurna. Apabila semakin banyak sinar datang seperti sinar 3, maka akan semakin banyak sinar yang dipantulkan secara sempurna. Kemudian dari perpotongan perpanjangan sinar-sinar pantul yang banyak tersebut akan menghasilkan suatu bayangan semu yang banyak jumlahnya dan akan terlihat seperti air. Jadi, sebenarnya, fatamorgana terjadi karena peristiwa pemantulan cahaya bukan pembiasan cahaya. Namun, untuk dapat menjelaskan peristiwa pemantulan sempurna kita perlu menggunakan konsep pembiasan cahaya. 2. Peristiwa pembentukan bayangan pada periskop Periskop adalah alat optik yang berfungsi untuk mengamati benda dalam jarak jauh atau berada dalam sudut tertentu. Bentuknya sederhana, yaitu berupa tabung yang dilengkapi dengan prisma pada ujung-ujungnya. Prisma ini akan memantulkan cahaya yang datang sejajar padanya, kemudian diatur sedemikian rupa sehingga membentuk sudut 45° terhadap sumbu tabung. Periskop digunakan pada tank kapal selam. Para navigator kapal selam memanfaatkan periskop untuk mengamati gerak-gerik yang terjadi di atas permukaan laut. Lalu bagaimana cara kerja periskop ini? Apakah ada keterkaitan dengan konsep pembiasan cahaya? Prinsip kerja periskop ini menggunakan konsep pemantulan sempurna. Proses pemantulan sempurna terjadi pada prisma yang digunakan sebagai alat optik untuk menangkap dan memantulkan cahaya. Prisma ini berjumlah dua buah yang disusun membentuk sudut 45°. Perhatikan gambar berikut. Ketika kita melihat ujung bawah periskop, sinar sejajar dari objek masuk lewat ujung atas mengenai prisma optik. Kemudian prisma tersebut akan memantulkan secara sempurna sinar dari objek tersebut membentuk sudut 45° ke arah prisma optik kedua. Kemudian sinar pantul dari prisma pertama tadi akan dipantulkan kembali 45° oleh prisma kedua menuju mata kita. Dengan demikian, kita dapat melihat objek tersebut. 3. Peristiwa dasar kolam yang tampak dangkal Jika kalian pernah memperhatikan kolam renang yang airnya jernih, maka akan tampak bahwa dasar kolam tersebut tampak dangkal. Namun jika kita menceburkan diri ke dalam kolam tersebut yang terjadi adalah dasar kolam ternyata tidak sedangkal yang kita lihat ketika berada di darat. Kenapa hal ini bisa terjadi? Bagaimana penjelasannya secara fisika? Pembiasan merupakan peristiwa pembelokan arah rambat cahaya karena melalui dua medium yang berbeda kerapatan optiknya di mana medium tersebut haruslah benda bening. Air jernih termasuk benda bening, sehingga pada air juga dapat terjadi peristiwa pembiasan. Ketika kita melihat dasar kolam, cahaya dari dasar kolam menuju mata kita. Ketika melewati permukaan air, cahaya akan dibelokkan menjauhi garis normal karena indeks bias air lebih besar dari indeks bias udara. Perhatikan gambar berikut. Sinar datang 1 dan 2 berasal dari dasar kolam menuju ke permukaan air, dan oleh udara, kedua sinar tersebut dibiaskan menjauhi garis normal menuju mata kita menjadi sinar bias 1 dan 2. Kedua sinar bias tersebut tidak berpotongan, yang berpotongan adalah perpanjangan kedua sinar bias. Di titik perpotongan perpanjangan kedua sinar bias ini terbentuklah bayangan semu dari dasar kolam yang letaknya di atas dasar kolam sebenarnya. Bayangan dasar kolam inilah yang terlihat oleh mata kita. Oleh karena itu, pada kolam yang airnya jernih, jika diamati dari atas permukaan air maka dasar kolam akan terlihat lebih dangkal dari yang sebenarnya. Jadi, bagi kalian yang tidak pandai berenang, jangan sampai terkecoh dengan ilusi optik semacam ini. Untuk menentukan kedalaman kolam yang sebenarnya, ada rumus yang bisa kalian gunakan. Rumus tersebut dapat kalian jumpai dalam artikel tentang Pembiasan Cahaya oleh Air, Contoh Soal dan Pembahasan. 4. Posisi benda langit tidak berada pada tempat sebenarnya Kalian tentunya pernah melihat jutaan bintang di angkasa ketika malam hari yang cerah bukan? Bintang merupakan benda langit yang dapat memancarkan cahaya. Karena memancarkan cahaya inilah, bintang-bintang di luar angkasa dapat terlihat dari bumi. Lalu sekarang yang menjadi pertanyaannya adalah, apakah posisi bintang yang kalian lihat dari bumi sama dengan posisi bintang yang sebenarnya di angkasa? Jawabannya adalah tidak. Kenap tidak? Bumi merupakan salah satu benda langit yang dapat dihuni oleh manusia. Bumi memiliki lapisan atmosfer yang banyak sekali memberi manfaat bagi kehidupan di Bumi, salah satunya adalah untuk melindungi makhluk hidup dari radiasi sinar ultraviolet yang dipancarkan oleh matahari. Lapisan udara pada atmosfer Bumi dengan lapisan hampa udara di luar bumi memiliki indeks bias yang berbeda. Udara pada atmosfer bumi indeks biasnya 1,0003 sedangkan ruang hampa udara vakum indeks biasnya adalah 1,0000. Meskipun selisihnya sangat kecil sekali, jika cahaya melewati dua lapisan udara tersebut tetap saja akan mengalami pembiasan. Hal ini yang menyebabkan kenapa bintang tidak berada pada posisi yang sebenarnya. Perhatikan gambar di bawah ini. Sebuah bintang di titik A tampak oleh kita ada di A’. Hal ini terjadi karena cahaya dari bintang dari medium hampa udara dibiaskan mendekati garis normal ketika berada di atmosfer bumi. Perpanjangan garis sinar bias ini akan menghasilkan bayangan dari bintang tersebut. Oleh karena itu, bintang-bintang yang terlihat di bumi sebenarnya tidak pada posisi yang sebenarnya, melainkan berada pada posisi yang lebih jauh lagi. Hal yang serupa juga berlaku untuk benda langit lainnya seperti bulan dan matahari. Umumnya, benda-benda angkasa yang kita lihat terangkat kira-kira 0,5° ke atas. PembahasanPembiasan terjadi ketika cahaya melewati medium yang berbeda kerapatannya. Apabila cahaya datang dari medium rapat ke renggang maka akan dibiaskan menjauhi garis normal. Apabila cahaya datang ari medium renggang ke rapat maka akan dibiaskan mendakati garis normal. Kaca lebih rapat dibandingkan udara, sehingga cahaya datang dari udara dibiaskan mendekati garis normal pada kaca, begitu sebaliknya. Jadi jawaban yang paling tepat adalah terjadi ketika cahaya melewati medium yang berbeda kerapatannya. Apabila cahaya datang dari medium rapat ke renggang maka akan dibiaskan menjauhi garis normal. Apabila cahaya datang ari medium renggang ke rapat maka akan dibiaskan mendakati garis normal. Kaca lebih rapat dibandingkan udara, sehingga cahaya datang dari udara dibiaskan mendekati garis normal pada kaca, begitu sebaliknya. Jadi jawaban yang paling tepat adalah B. Cahaya yang menimbulkan pembiasan. - Kids, apakah kamu tahu peristiwa pembiasan cahaya? Refraksi atau pembiasan cahaya didefinisikan sebagai perubahan arah rambat partikel cahaya akibat terjadinya suatu percepatan. Peristiwa ini terjadi pada optika era optik geometris dengan refraksi cahaya yang dijabarkan dengan hukum snellius. Baca Juga Proses Bagaimana Terbentuknya Sebuah Bayangan dan Sifat-Sifat yang Dimunculkannya, Sudah Tahu? Hukum snellius sendiri adalah proses terjadinya bayangan secara bersamaan dengan refleksi gelombang pada cahaya. Tumbukan antara gelombang cahaya menyebabkan kecepatan fase gelombang cahaya akan berubah seketika. Lalu, apa saja contoh peristiwa pembiasan cahaya? Penasaran, kan? Yuk, simak ulasannya! Contoh Peristiwa Pembiasan Cahaya dalam Kehidupan Sehari-Hari 1. Berlian yang Tampak Berkilau Pixabay Berlian yang mengkilap adalahsalah satu contoh pembiasan cahaya. Cahaya yang menyinari berlian akan mengalami serangkaian proses pembiasan oleh permukaan permukaan berlian tersebut. Hal ini disebabkan indeks bias intan yang cukup besar dan sudut kritis berlian yang kecil sehingga menyebabkan mereka akan tampak berkilau. Baca Juga Daftar 5 Negara Tertinggi di Dunia, Salah Satunya Jadi Sumber Berlian 2. Sedotan yang Tampak Bengkok dalam Gelas Berisi Air Pixabay Sedotan yang bengkok dalam gelas berair adalah salah satu contoh pembiasan cahaya. Sedotan yang bagiannya masuk di dalam gelas berisi air akan terlihat bengkok jika dilihat dari luar. Hal ini terjadi karena cahaya yang datang dari udara kurang rapat berjalan menuju air lebih rapat akan mengalami pembiasan menjauhi garis normal. Proses pembiasan cahaya ini pun terjadi di dalam gelas tersebut. Hal ini yang mengakitbatkan sedotan dalam gelas berair akan tampak bengkok karena enggak berada di titik sebenarnya garis normal. 3. Dasar Kolam yang Tampak Dangkal Pixabay Kolam renang yang terlihat dangkal adalah salah satu contoh pembiasan cahaya. Dasar kolam akan tampak seolah dangkal jika dilihat dari permukaan daratan, Kids. Hal ini disebabkan karena cahaya yang datang dari udara kurang rapat menuju air lebih rapat dan akan mengalami pembiasan menjauhi garis normal. Proses pembiasan cahaya ini akan berlangsung di dalam kolam renang tersebut. Baca Juga Unik dan Langka! Berjarak 800 Tahun Cahaya dari Bumi, Ilmuwan Temukan Dua Planet Raksasa Menari Bersama Hal ini menyebabkan seolah dasar kolam akan terlihat dangkal karena terjadi pembiasan akibat bayangan dasar kolam bukan bentuk yang sesungguhnya. Nah, itu dia, Kids, contoh peristiwa pembiasan cahaya dalam kehidupan sehari-hari. Semoga bermanfaat! - Teman-teman, kalau ingin tahu lebih banyak tentang sains, dongeng fantasi, cerita misteri, dan pengetahuan seru, langsung saja berlangganan majalah Bobo dan Mombi SD. Tinggal klik di Artikel ini merupakan bagian dari Parapuan Parapuan adalah ruang aktualisasi diri perempuan untuk mencapai mimpinya. PROMOTED CONTENT Video Pilihan Tentunya kalian sudah dapat menyebutkan contoh kejadian sehari-hari yang dapat dijelaskan dengan konsep pembiasan. Dasar kolam tampak lebih dangkal dari sebenarnya dan sebatang pensil yang dicelupkan ke dalam air tampak bengkok merupakan contoh kejadian sehari-hari yang berkaitan dengan terjadinya pembiasan cahaya. Pembiasan cahaya tidak sembarang, tetapi mengikuti hukum-hukum pembiasan. Hukum pembiasan pertama kali dinyatakan oleh Willebrord Snellius, seorang ahli Fisika berkebangsaan Belanda. Snellius melakukan eksperimen dengan melewatkan seberkas sinar pada balok kaca. Secara sederhana, percobaan Snellius ditunjukkan seperti pada gambar di bawah ini. Seberkas cahaya sinar laser/kotak cahaya di arahkan menuju permukaan balok kaca gambar kiri. Ternyata, sinar dibelokkan pada saat mengenai bidang batas udara-kaca. Jika digambarkan dalam bentuk dua dimensi gambar kanan, maka sinar datang dari udara dibiaskan dalam kaca mendekati garis normal. Sehingga besar sudut datang i selalu lebih besar dari sudut bias r. Jika percobaan yang sama diulang dengan sudut datang yang berubah-ubah yaitu sebesar i1, i2, i3 hingga sudut biasnya r1, r2, r3 ternyata Snellius menemukan bahwa hasil perbandingan sinus sudut datang dengan sinus sudut biasnya selalu konstan atau tetap. Dengan hasil percobaannya tersebut, Snellius mengemukakan Hukum Pembiasan yang berbunyi sebagai berikut. Sinar datang, garis normal dan sinar bias terletak dalam satu bidang datar. Perbandingan sinus sudut datang dengan sinus sudut bias pada dua medium yang berbeda merupakan bilangan tetap. Secara matematis, pernyataan Hukum Snellius yang kedua di atas dapat dituliskan dalam bentuk persamaan berikut. sin i1 = sin i2 = sin i3 sin r1 sin r2 sin r3 sin i = Tetap ………………… pers. 1 sin r Tetapan atau konstanta tersebut disebut dengan indeks bias relatif suatu medium terhadap medium lain. Jika sinar datang dari medium 1 ke medium 2, maka indeks bias relatif medium 2 terhadap medium 1 ditulis sebagai berikut. Dengan demikian, persamaan 1 di atas dapat ditulis ulang sebagai berikut. Sehingga kita peroleh rumus hubungan antara sudut datang, sudut bias dan indeks bias medium sebagai berikut. Keterangan n1 = indeks bias mutlak medium 1 n2 = indeks bias mutlak medium 2 n21 = indeks bias relatif medium 2 terhadap medium 1 i = sudut datang pada medium 1 r = sudut bia pada medium 2 Selain kedua pernyataan Hukum Snellius di atas, masih ada hal lain yang berlaku pada peristiwa pembiasan cahaya, yaitu sebagai berikut. 1 Jika sinar datang dari medium kurang rapat ke medium lebih rapat, sinar akan dibiaskan mendekati garis normal. Ini berarti, sudut bias lebih kecil daripada sudut datangnya r < i. 2 Jika sinar datang dari medium lebih rapat ke medium kurang rapat, cahaya akan dibiaskan menjauhi garis normal. Jadi, sudut datang lebih kecil dari sudut bias i < r. 3 Jika sinar datang tegak lurus batas dua medium, maka sinar tidak dibiaskan melainkan diteruskan. Ketika cahaya cahaya dari sebuah medium merambat melewati medium lain yang berbeda kerapatan, cepat rambat cahaya akan berubah. Cepat rambat cahaya akan berkurang jika memasuki medium dengan kerapatan tinggi. Sebaliknya, cepat rambat cahaya akan bertambah jika memasuki medium dengan kerapatan rendah. Perbandingan cepat rambat cahaya di ruang hampa c dengan cepat rambat cahaya di dalam medium disebut indeks bias mutlak. Indeks bias mutlak suatu medium dapat dicari dengan rumus Keterangan n = indeks bias mutlak medium c = cepat rambat cahaya di ruang hampa 3 × 108 m/s v = cepat rambat cahaya di dalam medium Pada hukum Snellius di atas, indeks bias mutlak medium 1 ditunjukkan oleh n1 dan indeks bias mutlak medium 2 ditunjukkan dengan n2. Sementara itu, perbandingan indeks bias mutlak dari dua buah medium disebut indeks bias relatif. Jika cahaya datang dari medium 1 dengan indeks bias n1 menuju medium 2 dengan indeks bias mutlak n2, maka indeks bias relatif medium 2 terhadap medium 1 dinyatakan dengan persamaan berikut. Dengan mensubtitusikan persamaan n = c/v, kita mendapat bentuk persamaan berikut ini. Keterangan n21 = indeks bias relatif medium 2 terhadap medium 1 i = sudut datang r = sudut bias n1 = indeks bias medium 1 n2 = indeks bias medium 2 v1 = cepat rambat cahaya pada medium 1 v2 = cepat rambat cahaya pada medium 2 Contoh Soal Dalam sebuah eksperimen untuk menentukan kecepatan cahaya di dalam air, seorang siswa melewatkan seberkas cahaya ke dalam air dengan sudut datang 30°. Kemudian, siswa mencatat sudut bias yang terjadi di dalam air ternyata besarnya 22°. Jika kecepatan cahaya di udara dianggap 3 × 108 m/s, tentukan kecepatan cahaya di dalam air. Penyelesaian Diketahui i = 30° c = 3 × 108 m/s r = 22° Ditanyakan v Jawab Dengan menggabungkan persamaan n21 = sin i/sin r dengan persamaan n21 = c/v, maka kita peroleh persamaan berikut. Dengan demikian, kecepatan cahaya di dalam air v dapat kita hitung dengan rumus berikut. v = 3 × 108 m/s × sin 22° sin 30° v = 3 × 108 m/s × 0,37 0,5 Jadi, kecepatan cahaya di dalam air adalah 2,25 × 108 m/s.